維修與飛航事故調查 (HFACS-ME)

飛航安全調查委員會

李寶康/飛航安全官

Introduction to Maintenance Error Analysis

Naval Safety Center School Of Aviation Safety

Worldwide Commercial Jet Accident

Worldwide Departures 1965-1999

Annual Departures (millions)

Primary Cause of Hull Loss Accidents Worldwide Commercial Jet Fleet (1990-1999)

How Significant are Maintenance Factors?

Studies found that:

- Maintenance contributed to 15% of commercial jet accidents (Boeing, 1995)
- •Maintenance was the 2nd greatest contributor to fatalities, following CFIT (CAA, 1992)

The Heinrich Ratio

Fatal Accident 1

Non-fatal accidents 10

Reportable incidents 30

Unsafe acts 600

Additional Maintenance/Ramp Error Data

20-30% of engine in-flight shutdowns and 50% of engine-related flight delays/cancellations are caused by maintenance error (Boeing, 1997)

48,800 non-airworthy aircraft are dispatched per year as a result of maintenance error (Marx, 1998)

Ramp accidents cost \$2-2.5 Billion annually (Ramp Safety, Vol. 11:3)

Maintenance Accident Costs

- Avg. cost of an in-flight engine shutdown is \$500,000
- Avg. cost of a flight cancellation is \$50,000
- Avg. cost of a return to gate is \$15,000
- Avg. ground damage incident costs \$70,000
- One airline estimates \$75-\$100 million/year is lost
- Airline Transport Association estimates that ground damage costs \$850 million/yr

(Source: hfskyway.faa.gov)

Paradigm Shift: Aloha Airlines, 1988

Watershed Event

Maintenance Resource Management Programs

- Error, Incident, Hazard, & Accident Investigation/Reporting
- Determine Cause Factors (& Targets for Subsequent Intervention)
- Provide Information for Suggesting Intervention Development

- ► Identify Causal Factor Patterns/Trends
- Assess Hazards/Risks to Prioritize Potential Targets for Intervention
- Provide Means to Forecast Potential Impact of Identified Interventions (ROI)

- Establish Metrics for Evaluating Intervention Effectiveness (ROI)
- ► Provide Lessons Learned for Specific Operations/Locations
- Permit Team/Individual Participation in the Development of Interventions

- Reporting Errors, Incidents, Hazards, & Accidents
- > Active Participation in Intervention Development
- Proactive Identification of Hazards/Errors
- Top Management Support & Individual Buy-In

- <u>Individual Worker</u> Awareness & Skill Development (Performance Optimization, Personal Safety, Team Synergy, & Proactive Improvement)
- Line Supervisor Awareness, Skill (listed above), Implementation, & Investigation/Reporting
- <u>Upper Management</u> Awareness, Overview of Skills, Investigation/Reporting, Implementation, & Metrics
- Safety/QA Awareness, Skill Development (listed above), Implementation, Investigation/Reporting, & Metrics

"Edward's Shell Model"

"Heinrich's Domino Theory"

Damage/Injury

Reason's "Swiss Cheese" Model

HFACS- Maintenance Extension

HFACS-ME in Commercial Aviation

The FAA's Office of Aviation Medicine requested that the US Navy's School of Aviation Safety apply HFACS-ME to commercial airline accidents

15 NTSB Maintenance related accident reports were analyzed from provided sets

HFACS-ME was successfully used to code existing NTSB reports

HFACS-ME Results of NTSB Reports

*NOTE: Similar proportions were found in US Navy accidents!

HFACS-ME Summary

- (1) HFACS-ME is effective in classifying maintenance errors.
- (2) HFACS-ME may be utilized on both major and minor accidents to fully capture maintenance errors.
- (3) HFACS-ME enables organizations to develop successful intervention strategies.

HFACS-ME

Human Factor Analysis and Classification System – Maintenance Extension

維修相關調查案例介紹

案例一

□該機起飛後到達30,000呎巡航時, Upper EICAS DU出現艙壓異常警告,檢查外流 閥位於關閉位置,檢查艙壓高度在 10,400呎且繼續上升,艙壓高度上升速 率約在400呎/分至500呎/分之間,正駕 駛員宣告緊急狀況,戴上氧氣面罩,執 行緊急下降程序, 並通知航管導引降落 ,人機均安。

事故後檢查

■檢查空調系統管路時發現,供應至前貨 艙之3號空調機管路自止回閥與機身加壓 艙耦合處脫落。

脫落空調管位置

空調管脫落情形(一)

空調管脫落情形(二)

維修紀錄

■依據該型機航空器維護計畫(Aircraft Maintenance Program,以下簡稱AMP),3號空調系統脫落部位止回閥之狀況檢查,為每4C定檢時執行,檢查時須將止回閥拆下,檢查後再予裝復,上次執行該項檢查時間為民國98年8月24日。

維修紀錄

- ■維護紀錄顯示
 - i 該機於民國102年8月12日駕駛員報告「STS MSG ZONE TEMP」,維修員據報檢查CMC發現「FWD CGO DUCT TEMP SENSOR/WIRING FAIL(T1657)」訊息。
 - ■該機於民國102年8月13日,於執行管路溫 度感測器檢查更換時,發現空調管塌陷、感 溫器損壞。

止回閥連續脫落事件簿

現場觀察

- ■變形之凸緣
- ■管夾安裝之上磅程序
- ■管夾扣件之構成
- ■飛機維修手册

變形之凸緣

變形之凸緣

飛機維修手冊

CHAPTER

20

STANDARD PRACTICES

飛機維修手冊

BOEING

747-400

AIRCRAFT MAINTENANCE MANUAL

		AIRCE	AFI MAI		
BOEING PART NUMBER	DASH NUMBER ()	TORQUE (INCH- POUNDS)	TORQUE (NEWTON- METERS)		
BACC10AC	150-200	40-50	4.52-5.65		
	225-300	60-70	6.78-7.91		
	315-550	120-140	14.01-15.81		
BACC10AUU()	250-275	70	7.91		
	300-500 550-600	100	11.30		
BACC10BR8()	100-900	100	11.30		
BACC10CT2()	100-600	100	11.50		
BACC1ODP()A	150-250				

IANCE MANUAL						
BOEING PART NUMBER	DASH NUMBER ()	TORQUE (INCH- POUNDS)	TORQUE (NEWTON- METERS)			
BACC10KH	200-275	45	5.08			
	300-475	55	6.21			
	500-550	60	6.78			
	600-650	65	7.34			
	700	70	7.91			
BACC10LE()	500-600	55	6.21			
	650-900	65	7.34			
NUCO (U430453)	125	55-65	6.21-7.34			

COUPLING CLAMPS, V-BAND, AND CHANNEL-BAND

THE RECOMMENDED TIGHTENING PROCEDURE IS AS FOLLOWS:

- APPLY THE INSTALLATION TORQUE AS GIVEN IN THE TABLE.
- 2. HIT THE ENTIRE CIRCUMFERENCE OF THE CLAMP LIGHTLY WITH A WOOD, LEATHER, OR SOFT PLASTIC MALLET.
- 3. DO STEPS 1 AND 2 UNTIL THE TORQUE WILL STAY CONSTANT.

	475-600	55	6.21						
	650-900	65	7.34						
BACC10HX()	100-300	10	1.13						
	325-500	15	1.69						1
	550-800	20	2.26						
1 THE RECO 1. APPLY 2. HIT T	THE INSTALLAT	ENING PROC	EDURE IS AS FO E AS GIVEN IN OF THE CLAMP	THE TABLE. LIGHTLY WITH A WOOD, LEATHER	R, OR SOFT PL	ASTIC MALLE	ET.		
3. 00 31	2F3 AND 2 01	IIIL INE I	ORQUE WILL STA	CONSTANT.					
				es for Clamps /20-51-01-990-809			4		

2014飛安資訊交流研討會

管夾扣件之構成

管夾扣件之構成

管夾扣件之構成

飛機維修手冊

- THE RECOMMENDED TIGHTENING PROCEDURE IS AS FOLLOWS: (中譯:建議依下列步驟上磅。)
 - 1. APPLY THE INSTALLATION TORQUE AS GIVEN IN THE TABLE.(中譯:依前表相應磅數上磅。)
 - HIT THE ENTIRE CIRCUMFERENCE OF THE CLAMP LIGHTLY WITH A WOOD, LEATHER, OR SOFT PLASTIC MALLET.(中譯:以木質、皮革或軟質橡膠槌輕力敲擊環夾圈圍。)
 - DO STEPS 1 AND 2 UNTIL THE TORQUE WILL STAY CONSTANT.(中譯:施行前項1,2,步驟至磅數穩定為止。)

HFACS-ME

Human Factor Analysis and Classification System – Maintenance Extension

案例二

❖ 該機從松山機場向東起飛,預計經營歌到桃園 縣復興鄉山區實施高高度飛行訓練,起飛至航 線三邊時(民權東路上空)左貨艙門掉落台北 市民生國中圍牆。

2014飛安資訊交

艙門脫落事件簿

調查發現

- ■機工長於起飛前執行後艙確認未落實。
- ■商維公司執行艙門檢查未落實。

HFACS-ME

Human Factor Analysis and Classification System – Maintenance Extension

省思

- ■飛機製造廠出版之手冊未必完整
- ■組織對故障處理審慎之態度
- ■各管理階層對組件送修程序之重視
- ■各專業工廠對其修護能量之瞭解
- ■維修員管夾締緊上磅程序之訓練

報告完畢

