

Gerard van Es (方恒睿) 经理 航空安全及飞行操作

2019飛安資訊交流研討會 2019 Safety Information Exchange Seminar

General safety statistics

□ Ways to avoid runway excursions

Overrun excursion

1

Reiter

-

-015

Veer-off excursion

= 3

2019 Preliminary data (August 1st)

□ 48 runway excursions with commercial flights (two per week);

□ 1 fatal runway excursion.

Worldwide RE occurrence rate, commercial flights

Worldwide, commercial flights

Worldwide, commercial flights

© NLR 2019 11

Who can help reducing runway excursions from happening?

□ Improve certification standards;

□ Provide (better) guidance material;

□ Promptly react to recommendations from AIBs;

□ Finance research into runway friction.

Example improve certification standards

Example improve certification standards

□ Common description of runway conditions;

□ Common way to calculate aircraft takeoff and landing performance.

inway Condition Assessment Matrix		
Runway Condition Description	Runway Condition Code	Control/Braking Action
- Dry	6	
 Frost Wet (includes damp and less than 1/8" (3mm) depth of water) Less than 1/8" (3mm) depth: Slush Dry Snow Wet Snow 	5	Good
-15°C and colder OAT: - Compacted Snow	4	Good to Medium
- Slippery when wet (wet runway) - Dry or Wet Snow (any depth) over Compacted Snow 1/8" (3mm) depth or greater: - Dry Snow - Wet Snow Warmer than -15°C OAT: - Compacted Snow	3	Medium
1/8" (3mm) depth or greater: - Water - Slush	2	Medium to Poor
- Ice	1	Poor
Wet Ice Water on top of Compacted Snow Dry Snow or Wet Snow over Ice	0	Nil

What can airports do?

Provide adequate:

- Macro and micro texture;
- Cross slope (1.0-1.5%).

Install accurate and sufficient wind sensors;

Clear runway from contaminants (snow/ice);

Accurately monitor and report runway condition;

Tools for real-time estimating runway wetness.

What can ATC do?

□ Timely provide flight crew with accurate reports on wind and runway conditions;

Make sure that arrival procedures don't introduce unstable approaches.

A DELTA

S. C. Bar

□ Study deficiencies in current knowledge;

□ Explore innovative ideas;

□ Study human behaviour related to runway excursions.

Example EASA AMC and FAA AC methods – Citation

Validate by correlating with braking on wet runways

• Steerable main landing gear and CLAS implemented in A320-simulator

How wet is this runway?

Example of the accuracy of the model (CDG airport)

□ Simple answer is a lot!

□ Significant part of causes is related to crew actions (or lack of);

□ Training and instruction of flight crews is important;

Extensive analysis of flight data;

□ Use Safety Management System approach to address hazards;

□ Installing warning tools on aircraft.

Improve training

Change procedures

FCOM A320 Volume 1

Average time from touchdown to thrust reverser engagement versus LDA

Inl

Develop new technologies that warns crews:

- During landing for unstable approaches, long landings or insufficient braking;
- During takeoff for wrong weight, wrong T/O position or thrust setting.
- □ Improve flight procedures and training material (FCOM/FCTM).

Airbus Runway Overrun Prevention System

□ Smartlanding is a software upgrade of the Honeywell E-GPWS:

- Monitoring A/C speed and position vs. runway threshold;
- Providing visual/aural annunciations to enhance crew awareness of unstabilised approach;
- Based on tuning defined by Honeywell (speed, glideslope) or set by airlines (long landing distance).

Takeoff performance errors – continued concern

Example takeoff overrun due to wrong TO weight

Vmu = 160 kt

Takeoff weight error of 38% (too low)

ATAN

115-

1.11

Collision with localizer antenna

Source: Airbus/ATSB

 \Box Checks that the speeds inserted by the pilot in the FMS are consistent (V1/VR/V2);

□ Checks aircraft position at take-off initiation (compares required and available takeoff distance).

Runway excursions are an old problem

□ Runway excursions will never disappear completely;

□ We can still reduce the number of excursions by new technology, better training and awareness.

Dedicated to innovation in aerospace

Fully engaged Royal Netherlands Aerospace Centre

NLR Amsterdam Anthony Fokkerweg 2 1059 CM Amsterdam The Netherlands

p)+31 88 511 31 13
e) info@nlr.nl i) www.nlr.org

NLR Marknesse Voorsterweg 31 8316 PR Marknesse The Netherlands

p)+31 88 511 44 44
e) info@nlr.nl i) www.nlr.org