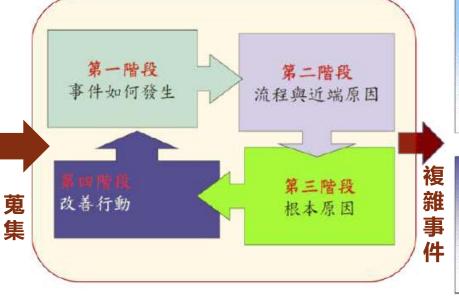


事故檢討機制

經驗分享


安全管理文化

事故檢討機制融入技術面及管理面

(一)檢討與追蹤管控

頻度	檢討會議	追蹤機制
每日	OP異常事件檢討	
當日	5上或特殊敏感事件專案檢討	
毎周	技術會報	

- 運轉調度
- 故排處理
- 設備運作
- 設備維修

第一階段

組成RCA小組 定義所要解決的問題 蒐集資料

第四階段

找風險點,系統性思維 運用屏障分析 擬定改善行動

第二階段

尋找事件可能的原因 確認時間及流程 分析人為設備等因子 考慮因應的時效

第三階段

根本原因的確認問為什麼/如何引起

事故檢討機制融入技術面及管理面

(二)異常事件結合品質管理檢討

故障原因分析

根本原因、間接原因及相關圖例照片 (利用5Why、RCA分析找出事件發生的根本原因)

QC品質管制 檢討

- ●維修履歷(含工單紀錄), 是否已落實執行SOP?
- ●現行SOP維修作業規定,為何無法發現故障之前兆異常問題?
- ●過去的改善措施為何無效?


QA品質保證 檢討

- ●維修流程與方法SOP修訂檢討:依故障根本原因就「人員、機具、 材料、方法、環境」進行系統性檢討,提出改善對策,有效防止 問題再發生,即找出監測關鍵點(Key Factor)與方法。
- ●稽核機制:針對關鍵點,強化稽查落實SOP。
- ●全面專案檢查:針對已發現缺失狀況,全面檢查予以消除問題。
- ●工法會議、技術會報討論:

QM品質管理 檢討

- 針對本事件設備(零組件)探討有效壽年,監控設備(零組件)變化趨勢、防止問題再發生等。
- 平行展開:進一步研討類似本事件影響營運的問題,進行失效模式與影響分析(FMEA),找出這些關鍵影響因素,並加以消除。
- 納入維修品質案例宣導。

RCA分析找出事件發生的根本原因

經驗分享 1.防洪

天然災害-極端氣候短時強降雨 -

2001.09.17

納莉颱風淹台北捷運

造成南港機廠、板南線、淡水線部 分車站、高運量行控中心設備和南港機廠部分列車泡水

2019.10.10

日本哈吉貝颱風

哈吉貝颱風於長野縣長野市干曲川 堤防潰堤最為嚴重,造成長野縣新 幹線車輛基地10台列車淹水 2021.07.20

河南鄭州地鐵淹水

極端氣候短時強降雨,造成鄭州地 鐵隧道內列車遭洪水淹沒

經驗分享 1.防洪(續)

天然災害-極端氣候短時強降雨

極端氣候暴雨捷運系統應變作為兵棋推演

- 1.盤點防洪設備功能確保
- 2.進行防洪功能驗證:運用NCDR淹水潛勢及捷運局淹水模擬報告進行分析。
- 3.預測弱點之強化作為:
 - (1)增列豪雨停止營運條件,包括站外積水及河川水位警戒。
 - (2)優化機廠夜間緊急移車作業原則。
- 4.建立防災新思維:當機立斷、確保人員及財產安全。

編號	車站	路面高程	入口 平台高程	設計防洪高程 (200年+1.1)	實際防洪設備		1 小時降雨200mm	
					防洪高程	防洪設施	淹水位 高程	超出入口 平台高度
1	O11(行天宮)	103.48	103.32	104.84	103.42	全斷面水密門	103.71	0.39
2	G17(松江南京)	104.55	104.46	105.74	104.46	全斷面水密門	104.61	0.15
3	BL16(昆陽)	108.59	108.7	110.35	110.45	防洪門(擋板)	108.77	0.07
4	BL05(龍山寺)	104.66	104.73	106.03	106.33	防洪門(擋板)	104.79	0.06
5	BL-南港機廠	109.4	109.4	110.59	110.6	防洪門(出土段)	109.46	0.06
6	G21(南京三民)	105.3	105.77	107.24	107.91	防洪門(擋板)	105.81	0.04
7	O8(大橋頭)	103.66	103.77	104.85	103.77	全斷面水密門	103.72	-0.05
8	O9(民權西路)	102.18	102.8	104.03	102.8	全斷面水密門	102.65	-0.15
9	O6(菜寮)	102.5	103.45	104.43	104.45	防洪門(擋板)	103.28	-0.17
10	BL07(臺北車站)	104.1	104.54	105.79	106.15	防洪門(擋板)	104.33	-0.21

編號	車站	路面高程構	機廠高程	200年重現洪 水位	設計防洪高程 (200年+1.1)	實際防洪高程	1 小時降雨200mm		24 小時降雨2000mm	
							淹水位 高程	超出機廠 路面高度	淹水位 高程	超出機廠 路面高度
1	BL-南港機廠	109.4	109.4	109.49	110.59	111.6	109.46	0.06	109.54	0.14
2	R-北投機廠	105.06	106.5	105.15	106.25	106.5	105.12	-1.38	105.41	-1.09
3	O-蘆洲機廠	101.4	103.29	101.49	102.59	103.29	101.46	-1.83	102.03	-1.26
4	BL-土城機廠	109.85	111.42	109.94	111.04	111.42	109.91	-1.51	109.99	-1.43
5	G-新店機廠	117	119.2	117.09	118.19	119.2	117.06	-2.14	117.14	-2.06
6	B-內湖機廠	110	113.1	110.44	111.54	113.1	110.13	-2.97	110.84	-2.26
7	BR-木柵機廠	120	122.97	120.09	121.19	122.97	120.06	-2.91	120.14	-2.83
8	O-新莊機廠	105.15	114.3	105.31	106.41	114.3	105.21	-9.09	105.58	-8.72
9	Y-南機廠	112	115.38	112.24	113.34	115.38	-	-	-	-

經驗分享 2.隧道設備入侵行車範圍

設備異常

2015 列車碰撞風管保溫鋁皮

原因:主送風管3片保溫鋁皮重疊包覆不足,因風壓影

響而翹起及螺絲固定孔撕裂情形,致使鋁皮脫落。

對策:

(1)改善保溫鋁皮包覆固定工法。

- (2)訂定隧道冷送風管2年檢,增加風管本體螺絲固定狀況檢查項目及程序。
- (3)震後加強軌道設備設備鎖固檢視,軌道範圍施工作業,實施「軌道安全防護計畫」。

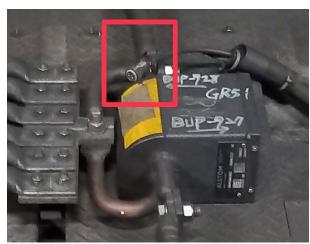


2022.11港鐵列車撞擊抽風系統金屬護欄出軌

原因:疑撞上隧道軌旁移位金屬護欄組件,致列車

車廂偏離軌道。

固定結構的任何部分不可超越淨空。



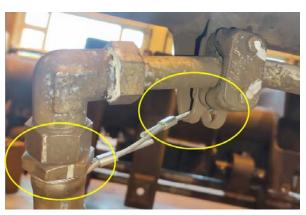
經驗分享 3.電聯車設備碰觸軌道設備

設備異常

府中站電聯車電纜脫落破壞軌道設備

111年7月列車於府中站進站前失去 速度碼,行控中心號誌電腦顯示軌道 電路有誤佔據,旅客反映列車有焦味 及煙霧。列車清車後回送機廠檢查, 駐車煞車氣管接頭脫落。檢視軌道設 備,道旁阻抗搭接器軍規接頭受損脫 落。

原因分析/改善對策


原因分析:

|轉向架端駐車煞車氣管接頭脫落,將道旁軌道電路發射端阻抗搭接器軍規

接頭扯斷,致軌道電路誤佔據偵測訊。

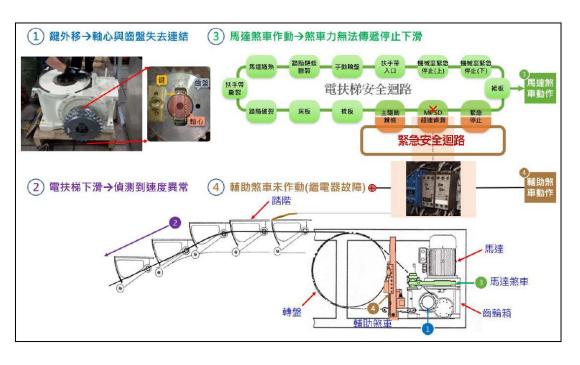
改善對策:

- (1)劃設安全線及螺絲標示劑方式,便於預檢作業及早查知。
- (2)輔以鋼索連接氣管接頭及鄰近組件支架上,防止氣管鬆脫。

經驗分享 4.電扶梯設備

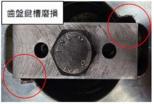
設備異常

新埔站電梯倒滑


111年3月新埔站月台往大廳號OTIS 電扶梯發生異常,上行電扶梯無預警下滑後自動停止,造成28位搭乘旅客中7位旅客輕傷。

原因分析/改善對策

原因分析(雙重故障):


- (1)齒輪箱齒盤固定鍵與鍵槽未緊密配合,導致固定螺栓鬆動。(主馬達煞車失效)
- (2)輔助煞車迴路之繼電器故障,導致輔助煞車未作動。

改善對策:

- (1)齒輪箱執行「固定鍵位置 檢測」、輔助煞車繼電器 檢查。
- (2)於齒輪箱翻修工法訂定鍵 與鍵槽裝配尺寸公差,每 月定期檢查齒輪箱及輔助 迴路繼電器。

使用工業內視鏡檢視齒盤鍵槽及固定鍵是否磨損

經驗分享 5.車站設備火災

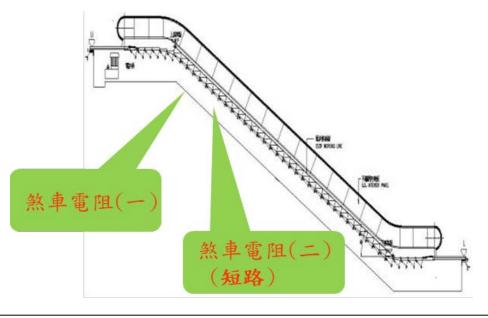
設備異常

台北車站電扶梯機坑冒煙

106年3月台北車站大廳層電扶梯上乘場縫隙煙霧持續冒出,車站完成旅客疏散後啟動隧道風機進行排風,車站有煙霧期間列車過站不停,消防隊員抵達協助滅火。

原因分析/改善對策

原因分析:煞車電阻線路劣化下垂,觸及踏階,造成短路火花引燃踏階內棉絮進而延燒至鏈輪,產生大量濃煙。


改善對策:

(1)變更原有配線方式,改以金屬軟管或線槽方式固定。修訂電扶梯清潔週期及方式。

(2)檢討後續變頻器重置契約,將煞車電阻型式、配置方式及相關線路更新範圍納入規

範。

安全管理文化融入全面品質管理意識

安全第一品質至上 形成安全管理文化

落實說寫作一致之紀律

第一次就把事情做對,監工、履約一致品質標準, 落實三級品管, 切莫便宜行事

落實SOP和安全檢核作業

緊急應變和故障處理,更需落實SOP和安全檢核作業

強化安全風險管理意識

明辨潛在危害,維護安全人人有責,共同消滅危險魔鬼

